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An understanding of the electrostatic interactions that exist between charged particles of dielectric
materials has applications that span much of chemistry, physics, biology, and engineering. Areas of
interest include cloud formation, ink-jet printing, and the stability of emulsions. A general solution
to the problem of calculating electrostatic interactions between charged dielectric particles is
presented. The solution converges very rapidly for low values of the dielectric constant and is stable
up to the point where particles touch. Through applications to unspecified particles with a range of
size and charge ratios, the model shows that there exist distinct regions of dielectric space where
particles with the same sign of charge are strongly attracted to one another. © 2010 American
Institute of Physics. �doi:10.1063/1.3457157�

I. INTRODUCTION

An understanding of the electrostatic interactions that
exist between charged particles of dielectric materials has
applications that cover many areas of chemistry, physics, bi-
ology, and engineering. Areas of interest include circum-
stances where charged particles might coalesce, for example,
aerosol and water droplets in clouds,1 dust particles in
space,2 toner particles in electrophotographic printers,3 and
suspensions of charged colloidal spheres.4 Other applications
exist in situations where interactions between dielectric par-
ticles influence charge separation, and an example of this is
electrospray ionization.5,6 The benefits to be gained from
finding a general and convergent solution to the problem of
interacting dielectric particles are very significant. Modeling
the induced image charge interaction between two conduct-
ing spheres that carry a charge has been the subject of many
numerical and analytical studies over a number of decades.7

In contrast, comparable theoretical studies of interacting di-
electric spheres began only quite recently. To date a variety
of solutions have been offered, many of which present math-
ematical derivations with limited applicability, numerical
complications, or poor convergence at very short particle
separation. Finding a stable solution with universal relevance
to the electrostatic properties of two closely interacting di-
electric spheres each carrying an arbitrary amount of charge
remains a challenge.

An image solution to the problem of a point charge out-
side a conducting sphere at zero potential was first proposed
in 1845 by Thomson �later Lord Kelvin� who interpreted the
Legendre series expressing the potential due to the actual
charge on the sphere as the potential due to an imaginary
point charge.8 Since then the classical Kelvin image theory

for a charged sphere was successfully generalized by
Lindell9,10 and extended to dielectric spheres.11–14 Many
models based on the image charge theory exist today, and
these include a variety of boundary conditions suitable for
describing some aspects of experiment,15–17 most notably the
methods proposed by Ohshima18–24 for the interaction be-
tween spheres in media of homogeneous dielectric permittiv-
ity. However, at close separation image charge methods re-
quire increasing numbers of images leading to convergence
problems for a series expansion of the electrostatic force.
Alternative approaches to studying electrostatic interactions
between dissimilar spherical dielectric particles include bi-
spherical coordinate methods,25 as well as various numerical
calculations, for example, Monte Carlo methods26 or the
Galerkin finite-element method,3 but these techniques have
limited applicability. A variational method to determine sur-
face polarization of dielectrics of arbitrary shape has recently
been set forward, and applied to a special case of two dielec-
tric spheres of the same radius and charge.27

A new approach to calculating the electrostatic force act-
ing on a dielectric sphere in an arbitrary external electric
field was proposed by Washizu28,29 and developed further in
a subsequent series of papers.30–32 The technique is based on
a re-expansion as a Taylor series of a Legendre expansion for
the external field around the center of a dielectric sphere. A
remarkable feature of the method is that the boundary con-
ditions, which define the problem, can be readily incorpo-
rated into a solution by expanding the potential as a
Legendre polynomial series.33–36 This method has recently
been extended to a variety of electrostatic boundary value
problems with dielectrics and conductors of spherical
geometry.37–41 However, for touching spheres a rapid conver-
gence to a stable solution, while maintaining general appli-
cability, has not been achieved.

In this work, a general solution to the problem of two
interacting spherical particles of arbitrary size, electrical
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charge, and dielectric constant is presented, covering a full
range of separation distances including the point of contact.
The action of charges under their mutual influence is ob-
tained from Gauss’s law that couples uniquely the surface
potential with the distribution and magnitude of electrical
charge on the surface of the spheres. The effect of the surface
charge is integrated to obtain an analytical expression for the
electrostatic force acting on the spheres at arbitrary separa-
tions. The result is a simple series expression for the force
that converges rapidly, can be efficiently generalized to
many-body systems for studying interactions in concentrated
solutions, and can be readily implemented within a variety of
particle collision and coalescence models. The boundary
conditions selected for the problem imply a constant charge
system in which the total net surface charge on each sphere
does not change with a variation in distance between
spheres. In this solution, no discontinuities in the electric
field �or force per unit charge� within the spherical surface
are encountered. Through applications to unspecified par-
ticles with a range of size and charge ratios, the model shows
that there exist distinct regions of dielectric space where par-
ticles with the same sign of charge are strongly attracted to
one another. These attractions arise from anisotropies in the
induced multipole interactions.

II. METHODOLOGY

A. Distribution of the electric potential on the surface
of the spheres

As shown in Fig. 1, the considered problem involves two
dielectric spheres, denoted as sphere i �i=1,2�, of an arbi-
trary size defined by a radius ai, permittivity �i, and carrying
an arbitrary charge Qi in a surrounding dielectric medium of
permittivity �0 �free space in this instance�. The permittivity
of a sphere relative to that of free space is the dimensionless
dielectric constant ki=�i /�0, where the permittivity of free
space �vacuum� �0 is equal to 8.854 187 817 6
�10−12 F /m. The dielectric material is electrically neutral
in its normal state with an undisturbed charge distribution,
and contains an equal number of positive and negative bound
charges, �b,i. The charge on each sphere is assumed to be
distributed uniformly over the surface, and no volume charge
is present. Hence, the total surface charge density �i is re-
lated to the free and bound charge densities as �i=� f ,i+�b,i.
The net charge on each sphere is fixed, independent of the
dielectric constant, and does not vary with the separation
distance between the spheres defined by vector h. This con-

dition implies a constant free surface charge density, � f ,i, and
the variation in electrostatic force acting on the system is the
result of polarization of the bound charge residing on the
surface of one sphere induced by an electric field due to the
presence of charge on the second sphere.

The Gauss electric potential42 at a point r due to spheres
1 and 2 is given by

��r� = K� dQ

R
= K� �1�t�dt

�r − a1�t��
+ K� �2�t�dt

�r − h − a2�t��
,

�1�

where K=1 /4��0�9�109 Vm /C is a constant of propor-
tionality and the integration is performed over the surfaces of
the spheres. The potential ��r� is the sum of the contribu-
tions from spheres 1 and 2, and it vanishes at infinity. Equa-
tion �1� can be viewed as the time-independent, singular
propagator solution of the Poisson two-particle differential
equation �2�=−4�K�, where �2 is the Laplacian and � is
the charge density which, in this special case, resides only on
the surface of the sphere.

In the following two subsections, it is shown how poten-
tial �1� can be expanded about the center of each sphere and
how boundary conditions are applied to achieve a solution.
These steps are taken to treat both spheres.

1. Expansion of the potential in terms of Legendre
polynomials

The denominator of the second term in Eq. �1� has no
singularity at r=a1, hence it can be expanded by a single
convergent polynomial about the center of sphere 1 as

K� �2�t�dt

�r − h − a2�t��

= K� �2��2�a2
2 sin �2d�2d�2

�r�	,�	� − h − a2��2,�2��

= K� �2���2��2�a2
2 sin �2d�2

�	
l=0




	
m=0



�l + m�!

m!l!

rla2
m

hl+m+1 Pl�cos 	�Pm�cos �2� , �2�

assuming spherical polar coordinates �a1 ,�1 ,�1�,
�a2 ,�2 ,�2�, and �r ,	 ,�	� for vectors a1, a2, and r, respec-
tively �see Fig. 1�. After introducing

Ai,m = 2�Kai
m+2�

0

�

sin �id�i�i��i�Pm�cos �i� , �3�

Eq. �2� can be rewritten as

K� �2�t�dt

�r − h − a2�t��
= 	

l=0




	
m=0




A2,m
�l + m�!

m!l!

rl

hl+m+1 Pl�cos 	� .

�4�

Expansion �4� is valid at all points r�a1 and r�a1 as long
as they are outside the region occupied by sphere 2.

The denominator of the first term in Eq. �1� is, however,
singular on the surface of sphere 1 where vectors r and a1

FIG. 1. A general geometric representation of the problem of two interacting
dissimilar spheres. Dielectric constants, permanent charges, and the radii for
spheres 1 and 2 are denoted as k1 ,Q1 ,a1 and k2 ,Q2 ,a2, respectively.
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coincide, and �r−a1�
0, and so expansion about the center
of sphere 1 leads to the separate expressions for r�a1 and
r�a1, namely,

K� �1�t�dt

�r − a1�t��
= K� �1��1�a1

2 sin �1d�1d�1

�r�	,�	� − a1��2,�2��

= K� �2���1��1�a1
2 sin �1d�1

�	
l=0



rl

a1
l+1 Pl�cos 	�Pl�cos �1�

= 	
l=0




A1,l
rl

a1
2l+1 Pl�cos 	� for r � a1 �5�

and

K� �1�t�dt

�r − a1�t��
= K� �1��1�a1

2 sin �1d�1d�1

�r�	,�	� − a1��1,�1��

= K� �2���1��2�a1
2 sin �1d�1d�1

�	
l=0



a1

l

rl+1 Pl�cos 	�Pl�cos �1�

= 	
l=0




A1,l
1

rl+1 Pl�cos 	� for r � a1. �6�

Substitution of Eqs. �4�–�6� in Eq. �1� gives the expansion of
the electric potential in the vicinity of sphere 1 in terms of
Legendre polynomials,

��r� = 	
l=0




A1,l
rl

a1
2l+1 Pl�cos 	�

+ 	
l=0




	
m=0




A2,m
�l + m�!

m!l!

rl

hl+m+1 Pl�cos 	�

for r � a1,

��r� = 	
l=0




A1,l
1

rl+1 Pl�cos 	�

+ 	
l=0




	
m=0




A2,m
�l + m�!

m!l!

rl

hl+m+1 Pl�cos 	�

for r � a1. �7�

2. Application of the boundary conditions

Apart from the condition that the electric potential van-
ishes at infinity, three additional boundary conditions are ap-
plied. The first boundary condition is continuity of the po-
tential on the surface of the sphere due to the continuity of
the tangential component of the electric field,

− �1

r

��

�	
�

r=a1
−

= − �1

r

��

�	
�

r=a1
+
. �8�

This boundary condition is automatically satisfied by the
choice of the electric potential described by Eq. �1�. Note
that the potential on the surface of the spheres is not con-
stant. The second boundary condition is discontinuity of the
normal component of the electric field due to the presence of
a permanent charge on the surface of each sphere,

4�K�1 = � ��

�r
�

r=a1
−

− � ��

�r
�

r=a1
+
. �9�

The last boundary condition states that the normal compo-
nent of the dielectric displacement field due to the presence
of free charge on the surface of a sphere is discontinuous,

4�K� f ,1 = �k1
��

�r
�

r=a1
−

− � ��

�r
�

r=a1
+

= const. �10�

Expansion �7� can be used to express the boundary condition
�9� with Legendre polynomials as basis functions

4�K�1 = 	
l=0




A1,l
la1

l−1

a1
2l+1 Pl�cos 	� + 	

l=0




A1,l
l + 1

a1
l+2 Pl�cos 	�

�11�

to give the following expression for the total surface charge
density on sphere 1:

�1�	� =
1

4�K
	
l=0




A1,l
2l + 1

a1
l+2 Pl�cos 	� . �12�

Similarly, boundary condition �10� gives

4�K� f ,1 = 	
l=0




A1,l
k1la1

l−1

a1
2l+1 Pl�cos 	� + 	

l=0




A1,l
l + 1

a1
l+2 Pl�cos 	�

+ �k1 − 1�	
l=0




	
m=0




A2,m
�l + m�!

m!l!

la1
l−1

hl+m+1 Pl�cos 	� .

�13�

Multiplying both sides of Eq. �13� by sin 	Pl��cos 	�
and integrating over the surface of sphere 1 as
�0

�sin 	d	Pl��cos 	�Pl�cos 	�= �2 / �2l+1��l,l� gives the fol-
lowing expression for the multipole moments:

4�Ka1� f ,1l,0 =
A1,l

a1
l+1 +

�k1 − 1�l
�k1 + 1�l + 1 	

m=0




A2,m
�l + m�!

l!m!

a1
l

hl+m+1 .

�14�

An expansion of potential �1� about the center of sphere 2
and the subsequent application of boundary conditions, as
described above for the case of sphere 1, leads to a comple-
mentary equation for multipole moments �this must follow
from Eq. �14� by simultaneously interchanging subscripts 1
and 2�,
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4�Ka2� f ,2l,0 =
A2,l

a2
l+1 +

�k2 − 1�l
�k2 + 1�l + 1 	

m=0




A1,m
�l + m�!

l!m!

a2
l

hl+m+1 .

�15�

After eliminating A2,l, Eqs. �14� and �15� can be combined to
obtain A1,j1

,

A1,j1
= a1V1 j1,0 −

�k1 − 1�j1

�k1 + 1�j1 + 1

a1
2j1+1

hj1+1 a2V2 +
�k1 − 1�j1

�k1 + 1�j1 + 1

� 	
j2=0




	
j3=0



�k2 − 1�j2

�k2 + 1�j2 + 1

�j1 + j2�!
j1!j2!

�j2 + j3�!
j2!j3!

�
a1

2j1+1a2
2j2+1

hj1+2j2+j3+2 A1,j3
, �16�

where a1V1=4�Ka1
2� f ,1=KQ1; a2V2=4�Ka2

2� f ,2=KQ2. With
an increase in the values of the dielectric constants k1 and k2,
an insulator begins to resemble a conductor, and for infinitely
large values of k1 and k2, Eq. �16� describes a conductor. It
can be seen from Eqs. �14� and �15� that under the “constant
free surface charge” boundary condition, if l is set to zero the
coefficients A1,0 for sphere 1 and A2,0 for sphere 2 do not
change as a function of the separation distance h.

B. Electrostatic force

To calculate the electrostatic force due to the presence of
a permanent charge residing on the surface of each of the
two spheres, Coulomb’s law for point charges can be readily
generalized. The electrostatic force is given by

F12 = K� dQ1�x1�� dQ2�x2�
x1 − x2

�x1 − x2�3

= − ẑ
�

�h
K� dQ1�x1�� dQ2�x2�

1

�x1 − x2����i=const,

�17�

where x1 and x2 are points on spheres 1 and 2, and ẑ is a unit
vector along the z-axis as shown in Fig. 1. The first integral
takes into account all charges residing on sphere 1 and the
second integral is the potential generated by all charges re-
siding on sphere 2. The last equality in Eq. �17� arises due to
cylindrical symmetry of the problem provided the differen-
tiation with respect to the separation distance h is performed
keeping the total surface charge density �i constant. It is
evaluated before applying the boundary condition, as shown
below. The convention of a negative term for an attractive
contribution to the force and a positive term describing re-
pulsion has been used.

If the vector a1 defines point x1 on sphere 1 and the
vector r defines point x2 on sphere 2, then the distance be-
tween two points located on spheres 1 and 2 is

�r − a1� = �r2 + a1
2 − 2a1r�cos 	 cos �1 + sin 	 sin �1 cos��	 − �1�� �18�

and the electrical charge on each sphere is

dQi = ai
2 sin �id�id�i�i��i� . �19�

The total charge on each sphere can be found by integrating over all angles as

Qi,tot = 2�ai
2�

0

�

d�i�i��i�sin �i, �20�

where �i��i� is the total charge density as a function of azimuth angle �i.
Using Eqs. �18�–�20� Coulomb force �17� can be rewritten in spherical coordinates as follows:

F12 = −
�

�h
K�a1a2�2�

0

�

sin �1d�1�1��1��
0

�

sin �2d�2�2��2��
0

2�

d�2

��
0

2� d�1

�r2 + a1
2 − 2a1r�cos 	 cos �1 + sin 	 sin �1 cos��	 − �1��

. �21�

To simplify Eq. �21� we note that the integral over �1 is independent of �	, and hence it can be written as

�
0

2�

d�2�
0

2� d�1

�r2 + a1
2 − 2a1r�cos 	 cos �1 + sin 	 sin �1 cos��	 − �1��

= �2��2	
l=0



a1

l

rl+1 Pl�cos 	�Pl�cos �1� = �2��2	
l=0




	
m=0


 �l + m�!
l!m!

a1
l a2

m

hl+m+1 Pm�cos �2�Pl�cos �1� , �22�

where in the last equality the following identity has been used:
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Pl�cos 	�
rl+1 = 	

m=0



�l + m�!

l!m!

a2
m

hl+m+1 Pm�cos �2� . �23�

Substitution of Eq. �22� back into Eq. �21� gives

F12 = −
�

�h
K�2��2�a1a2�2	

l=0




	
m=0



�l + m�!

l!m!

a1
l a2

m

hl+m+1�
0

�

sin �2d�2�2��2�Pm�cos �2��
0

�

sin �1d�1�1��1�Pl�cos �1�

= �a1a2�2	
l=0




	
m=0



�l + m + 1�!

l!m!

a1
l a2

m

hl+m+2�
0

�

sin �2d�2�2��2�Pm�cos �2��
0

�

sin �1d�1�1��1�Pl�cos �1� . �24�

Using Eq. �3�, Eq. �24� can be simplified as follows:

F12 =
1

K
	
l=0




	
m=0




A1,lA2,m
�l + m + 1�!

l!m!

1

hl+m+2 �25�

and after rearrangement using Eq. �14� the electrostatic force is given by

F12 =
1

K
	
l=0




A1,l�l + 1�	
m=0




A2,m
�l + m + 1�!
�l + 1�!m!

1

hl+m+2 =
1

K
	
l=0




A1,l
�k1 + 1��l + 1� + 1

�k1 − 1�a1
l+1 Ka1� f ,1l+1,0 −

A1,l+1

a1
l+2 �

= −
1

K
	
l=0




A1,lA1,l+1
�k1 + 1��l + 1� + 1

�k1 − 1�a1
2l+3 . �26�

In third line of Eq. �26� the dependence of the electrostatic force between two spheres on the separation distance h is held in
the multipole moments coefficients A1,l and A1,l+1. The coefficients are computed by solving the linear Eq. �16� and substituted
back in the third line of Eq. �26� to investigate the behavior of the electrostatic force numerically. The results are discussed in
Sec. IV.

III. PHYSICAL AND MATHEMATICAL CONSIDERATIONS

In Eq. �26�, the l=0 term can be separated from the summation as follows:

F12 =
1

K
	
l=0




A1,l�l + 1�	
m=0




A2,m
�l + m + 1�!
�l + 1�!m!

1

hl+m+2 =
1

K�A1,0	
m=0




A2,m
m + 1

hm+2 + 	
l=1




A1,l�l + 1�	
m=0




A2,m
�l + m + 1�!
�l + 1�!m!

1

hl+m+2�
=

1

K�A1,0	
m=0




A2,m
m + 1

hm+2 + 	
l=1




A1,l
�k1 + 1��l + 1� + 1

�k1 − 1�a1
l+1 Ka1� f ,1l+1,0 −

A1,l+1

a1
l+2 ��

=
1

K�A1,0	
m=0




A2,m
m + 1

hm+2 − 	
l=1




A1,lA1,l+1
�k1 + 1��l + 1� + 1

�k1 − 1�a1
2l+3 � . �27�

Further rearrangement using Eq. �15� gives

F12 =
1

K�A1,0A2,0

h2 + A1,0	
m=1




	
l=0




A1,l
�k2 − 1�m

�k2 + 1�m + 1

�l + m + 1�!
l!m!

a2
2m+1

h2m+l+2� −
1

K
	
l=1




A1,lA1,l+1
�k1 + 1��l + 1� + 1

�k1 − 1�a1
2l+3 . �28�
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Taking into account the equalities A1,0=KQ1=4�Ka1
2�1,f and

A2,0=KQ2=4�Ka2
2�2,f, the electrostatic force can be written

as

F12 = K
Q1Q2

h2 − Q1	
m=1




	
l=0




A1,l
�k2 − 1�m�m + 1�

�k2 + 1�m + 1

�
�l + m�!

l!m!

a2
2m+1

h2m+l+3 −
1

K
	
l=1




A1,lA1,l+1
�k1 + 1�l + 1

�k1 − 1�a1
2l+3 .

�29�

The first term in Eq. �29� is the Coulomb force between two
nonpolarizable spheres, or point charges separated by a dis-
tance h,

F12
0 = K

Q1Q2

h2 , �30�

the first and second terms taking l=0 as the electrostatic
force between a charged polarizable sphere 2 and a nonpo-
larizable sphere 1 �or a point charge�,

F12
1 = K

Q1Q2

h2 − K
Q1

2

h2 	
m=1



�k2 − 1�m�m + 1�

�k2 + 1�m + 1

a2
2m+1

h2m+1 . �31�

Thus, we obtain a solution for the electrostatic force be-
tween two dissimilar dielectric, charged, polarizable spheres,
where specific case �31� for Q2=0 is well known from the
theory of static and dynamic electricities as the attraction
between a neutral polarizable sphere and a point charge.43 If
sphere 2 is nonpolarizable �k2=1�, the electrostatic force is
simply defined by the first term of Eq. �31�, and for the case
Q1Q2�0 the force is always repulsive irrespective of how
large the charge, Q2, is on sphere 2. When sphere 2 is polar-
izable �k2�1� the second term in Eq. �31� becomes attrac-
tive, but the first term will be either attractive or repulsive
depending on the signs of the charges Q1 and Q2. In the case
of a dielectric sphere, under the action of an external force
�in this case, due to the presence of a nonpolarizable sphere
with charge Q1�, the bound charges experience a torque and
the dipoles and higher order multipoles align within sphere 2
along the electric field generated by the nonpolarizable
sphere. If Q1 is negative the Coulomb field aligns the posi-
tive bound charges to face sphere 1 giving rise to the net
attractive force, and if Q1 is positive the negative bound
charges are aligned which also give a net attractive force.
The larger the dielectric constant the greater the effective
alignment and hence the greater the attractive force; how-
ever, the probability of a bound charge becoming free would
also increase, and this would cause the dielectric material to
resemble a conductor. Similar effects occur throughout the
volume of the sphere but since there is no free volume
charge density it follows that there cannot be a bound vol-
ume charge density. Hence the absence of a volume term in
the equation of force �17�. In the next section, we discuss in
detail the effects of surface polarization in dielectric spheres
on the net electrostatic force.

IV. DISCUSSION AND RESULTS

In this first application of the model the calculations con-
centrate on one of the more interesting aspects to the behav-
ior of charged particles, and that is when particles carrying
the same sign of charge are attracted to one another. In
clouds this process is called charge scavenging and takes the
form of highly charge aerosols being absorbed by much
larger, charged water droplets.44,45 Laboratory experiments
have confirmed this behavior and current models of charge
scavenging use image charge methods.1,44,45 More recently,
there has been interest in the electrostatic interactions that
exist between like-charged colloidal particles when they are
suspended in an electrolyte.4 Again, experiments support the
view that under certain circumstances, these interactions can
be attractive. In situations where particle dispersion is impor-
tant, for example, in the case of electrospray, the attractive
electrostatic interactions between highly charged fragments
as they begin to move apart can generate a barrier to sepa-
ration. To date, image charge methods have been used to
model this behavior.5

In this section the conditions under which an attraction
between like-charge particles of a dielectric material might
be observed are mapped out for various combinations of
size, charge, and dielectric constant. In all case, the particles
are assumed to be suspended in a vacuum, and so no account
has been taken of how the presence of a solvent might mod-
erate the strength of an interaction. In the discussion that
follows the variables of distance and charge are presented as
dimensionless ratios, which means that the observed patterns
of behavior are appropriate for particles with absolute sizes
and charges that can vary over many orders of magnitude.
Distance d presented in Figs. 2–4 is a scaled separation
between the surfaces of two spheres defined as
d= �h− �a1+a2�� /a1. Similarly, the calculated electrostatic
force between the particles, F12, has been scaled. Figure 2
shows how F12 varies as a function of scaled separation d
between two spheres of equal radius, a2 /a1=1, where
Q2 /Q1=3, and for a wide range of dielectric constants. For

FIG. 2. Calculated electrostatic force, F12, between two spheres as a func-
tion of the scaled separation d. In each case, a1=a2, Q1=1, and Q2=3, and
the value of dielectric constant, ki, varies between 1.1 and 1000. For refer-
ence purposes, the force between two point charges has also been plotted.

024105-6 Bichoutskaia et al. J. Chem. Phys. 133, 024105 �2010�



reference purposes, the force between two point charges is
also given. As can be seen, when the dielectric constant is
small F12 remains positive and tends to the limit of nonpo-
larizable spheres or point charges described by solution �30�.
However, as ki increases beyond 5 the force becomes in-
creasingly more negative at short separations, and this is in-
dicative of an attractive interaction between the particles.
What is clear is that the most significant changes in F12 take
place when the dielectric constant varies between 2 and 25
where, for a given value of d the forces switch from being
repulsive, F12�0, to attractive, F12�0, at short separations.
As ki approaches 1000 the spheres start to behave as conduc-
tors and the very strong attraction characteristic of charged
metallic particles with different radii is observed.7 Figure 3
takes the data for ki=25 and shows how F12 varies as a
function of the charge ratio Q2 /Q1. In this case it can be seen
that as the latter increases there is a very significant increase
in the degree of attraction between the spheres. However,

this attraction is counterbalanced, in part, by a repulsive in-
teraction at long range that also increases as a function of
Q2 /Q1. Finally for this section, Fig. 4 shows how the elec-
trostatic force between spheres with ki=25 and Q2 /Q1=3
varies as a function of d for different ratios of their size. As
can be seen, the strongest attraction exists when sphere 2 is
small and has the higher surface charge density. As the latter
decreases �sphere 2 increases in size�, the force rapidly
switches to being greater than zero, which corresponds to a
repulsive interaction.

Having established that attractive interactions between
particles are at their strongest when the two spheres touch,
Fig. 5 presents a series of three-dimensional plots of the
force between two touching particles calculated as a function
of systematic changes in the two ratios Q2 /Q1 and a2 /a1 for
a range of dielectric constants. In Fig. 5�a� both spheres have
a dielectric constant of 1.1 and it is clear that irrespective of
charge or size, the force is always positive and so the inter-
action is repulsive. As noted earlier, this situation corre-
sponds to spheres that are nonpolarizable. In contrast, when
ki=100 �Fig. 5�b�� there is a very marked region of attraction
when Q2 /Q1 is greater than unity and a2 /a1 is less than
unity; however, there is also an area of the plot correspond-
ing to Q2 /Q1 less than unity and a2 /a1 greater than unity that
is also weakly attractive �see below�. In Figs. 5�c� and 5�d�,
the model has been applied to two spheres carrying opposite
charges and, as expected, the interaction is always attractive,
but its magnitude is strongly influenced by dielectric con-
stant. Finally, in Figs. 5�e� and 5�f� an analysis of the inter-
action between spheres with different dielectric constants is
presented. Again, the magnitude of the force is affected by
the value assigned to either of the dielectric constants and is
at its strongest �most negative� when the particle with the
larger charge is given a low value of ki. As expected, this
result implies that a large sphere with a high value of ki is
very susceptible to being polarized by a highly charged body.
In Fig. 5�e� it is again possible to identify a combination of
Q2 /Q1�1 and a2 /a1�1 where the force becomes negative
and the circumstances are similar to those responsible for the
strong attraction in Fig. 5�f�: a large polarizable sphere in the
presence of a smaller sphere that is carrying a higher charge.

From the patterns of behavior displayed in Fig. 5 it is
clear that the switch between like-charged particles experi-
encing either a positive or a negative force �a repulsive or
attractive interaction� is critically dependent on the values
assigned to Q2 /Q1, a2 /a1, k1, and k2. From an analysis of
how surfaces, such as those give in Fig. 5, respond to sys-
tematic changes in these variable, it is possible to map out
those regions of Q2 /Q1, a2 /a1, k1, and k2 where the force is
either positive under any circumstances or becomes negative
at close separation. For each value of k1=k2�1000 the ratios
of Q2 /Q1 and a2 /a1 at which the force switches from being
positive to negative have been determined and plotted in Fig.
6. For clarity, the number of discrete values for ki presented
on the plot has been limited, but sufficient results are shown
to define boundaries. Taking, for example, a2 /a1=2, it can be
seen that when ki=1000 there will be an attractive interaction
between particles when Q2 /Q1 is either less than 1 or greater
than 3. Similarly, when ki=5, the same size ratio will need a

FIG. 3. Calculated electrostatic force, F12, between two spheres as a func-
tion of the scaled separation d. In each case, a1=a2, ki=25, and the charge
ratio, Q2 /Q1, varies between 1 and 3.

FIG. 4. Calculated electrostatic force, F12, between two spheres as a func-
tion of the scaled separation d. In each case, Q2 /Q1=3, ki=25, and the ratio
of the radii, a2 /a1, varies between 1 and 3.
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charge ratio on the particles, Q2 /Q1, which is either very
small or greater than 7 for the pair to experience an attractive
interaction. Going in the other direction, it is clear that the
constraints on creating an attractive combination are far more
restrictive. For example, if Q2 /Q1=1, then a2 /a1 has to be
either less than 1 or greater than 2 �ki�25�, alternatively if
ki=5 then a2 /a1 has to be either very much smaller than 1 or
greater than 6. No particles of that charge ratio will experi-
ence an attraction if ki�5. Beyond Q2 /Q1=2, the model
predicts that the interaction between like-charged particles
will always be repulsive when a2 /a1�4. As expected, these
regions also map on to the surfaces shown in Fig. 5. Taking
for example Fig. 5�b�, then the two attractive sections iden-
tified above correspond in Fig. 6 to situation where Q2 /Q1 is
either much less than 1 �weakly attracting� or greater than 3
�strongly attracting�.

V. CONCLUSIVE REMARKS

A general solution to the problem of calculating the elec-
trostatic interaction between two charged particles of a di-
electric material has been presented. The solution converges
very rapidly for low values of the dielectric constant and it is

FIG. 5. Three-dimensional plots showing the variation of the electrostatic force, F12, between touching spheres �d=0� as the charge ratio, Q2 /Q1, and the ratio
of the radii, a2 /a1, vary between 0 and 3. �a� k1=k2=1.1; �b� k1=k2=100; �c� and �d�, as for �a� and �b�, but one of the sphere carries a negative charge; �e�
k1=5, k2=100; �f� k1=100, k2=5. Note the second attractive region in �e� when Q2 /Q1 is much less than 1 and a2 /a1 is in the range of 2–3. The color is only
a guide and does not denote any absolute scale.

FIG. 6. A map showing the regions of Q2 /Q1 and a2 /a1 where the electro-
static force, F12, between touching particles becomes negative, and particles
are attracted to one another. Contours have been calculated for selected
values of k1=k2 in the range of 1–1000, and are presented as boundaries,
within which particles carrying the same sign of charge are attracted to one
another. For example, the regions of attractive interactions for k1=k2

=1000 are shown by gray shaded areas and for k1=k2=2 by dashed areas;
for Q2 /Q1=4 the conditions for attraction are a2 /a1�1 if k1=k2=5 and
a2 /a1�2 if k1=k2=25.
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stable up to the point where the particles touch. The excellent
convergence of the solution for the electrostatic force has
been achieved through elimination of angular dependence
from the final equations. It is shown that with the application
of certain limiting conditions, the solution for the force fully
agrees with an earlier result from the application of classical
electrostatics to the problem of a point charge interacting
with a neutral polarizable sphere. By mapping out how the
force between arbitrary charged particles varies according to
their dielectric constant, it is shown that there are very dis-
tinct ratios of charge �Q2 /Q1� and size �a2 /a1� that lead to an
attractive interaction between particles of like-charged.
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APPENDIX A: COULOMB ENERGY BETWEEN TWO
CHARGED PARTICLES OF A DIELECTRIC
MATERIAL

Although application of the theory of electrostatics to the
interpretation of experimental data on dielectric particles fre-
quently requires a measure of the force, F12, there are many
instances where knowledge of the potential energy between
colliding particles is required. In this appendix the equations
presented earlier have been reformulated to give an expres-
sion for the Coulomb energy between two charged particles
of a dielectric material.

The Coulomb interaction energy is given by

U12 = K� dQ1�x1�� dQ2�x2�
�x1 − x2�

, �A1�

where x1 and x2 are points on spheres 1 and 2 as shown in
Fig. 1. Using Eqs. �18�–�20� the Coulomb interaction poten-
tial �A1� can be rewritten in spherical coordinates as follows:

U12 = K�a1a2�2�
0

�

sin �1d�1�1��1��
0

�

sin �2d�2�2��2��
0

2�

d�2�
0

2� d�1

�r2 + a1
2 − 2a1r�cos 	 cos �1 + sin 	 sin �1 cos��	 − �1��

.

�A2�

Substitution of identity �23� into Eq. �A2� gives

U12 = K�2��2�a1a2�2	
l=0




	
m=0



�l + m�!

l!m!

a1
l a2

m

hl+m+1�
0

�

sin �2d�2�2��2�Pm�cos �2��
0

�

sin �1d�1�1��1�Pl�cos �1� . �A3�

Using Eq. �3�, Eq. �A3� can be simplified as follows:

U12 =
1

K
	
l=0




	
m=0



�l + m�!

l!m!

1

hl+m+1A1,lA2,m

=
1

K
	
m=0



1

hm+1A1,0A2,m +
1

K
	
l=1




	
m=0



�l + m�!

l!m!

�
1

hl+m+1A1,lA2,m, �A4�

and further rearrangement using Eq. �14� as A1,0=KQ1

=4�Ka1
2�1,f gives

U12 = Q1
A2,0

h
+ Q1	

m=1



A2,m

hm+1 +
1

K
	
l=1




A1,l
1

a1
l

�k1 + 1�l + 1

�k1 − 1�l

�4�Ka1� f ,1l,0 −
A1,l

a1
l+1� . �A5�

Taking into account the equality A2,0=KQ2=4�Ka2
2�2,f, fur-

ther rearrangement gives

U12 = K
Q1Q2

h
+ Q1	

m=1



A2,m

hm+1 −
1

K
	
l=1



�k1 + 1�l + 1

�k1 − 1�l
A1,lA1,l

a1
2l+1

= K
Q1Q2

h
+ Q2	

m=1



A1,m

hm+1 −
1

K
	
l=1



�k2 + 1�l + 1

�k2 − 1�l
A2,lA2,l

a2
2l+1 .

�A6�

Finally, using Eqs. �14� and �15� we can rewrite the first line
of Eq. �A6� as

U12 = K
Q1Q2

h
− Q1	

m=1




	
l=0



�k2 − 1�m

�k2 + 1�m + 1

�l + m�!
l!m!

�
a2

2m+1

h2m+l+2A1,l −
1

K
	
l=1



�k1 + 1�l + 1

�k1 − 1�l
A1,lA1,l

a1
2l+1 �A7�

and the second line of Eq. �A6� can be also rewritten by
interchanging labels 1 and 2.

APPENDIX B: CONVERGENCE RATES

The convergence rates of summations for the electro-
static force and the Coulomb energy are, in general, much
slower for conductors than for dielectric materials. To dem-
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onstrate the excellent convergence rate of the presented for-
malism, the most demanding computationally case of two
spheres in contact is presented in Table I, in which the two
spheres are assumed identical �Q1=Q2 and a1=a2�. As Table
I shows with the limit taken to be 30 precision of ten decimal
places �absolute error is 3�10−9� is achieved for large val-
ues of the dielectric constant �k=1000� and more than ten
decimal places �absolute error is 8�10−11� for small values
of the dielectric constant �k=2�.
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TABLE I. Convergence test for Eq. �26� calculating the electrostatic force
between two identical charged dielectric particles at the point of contact.
The force is presented as F12= �V2 /K�S, where S is the result of the summa-
tion in Eq. �26� and V=V1=V2 �particles have the same charge Q and the
same radius a�. Column 1 shows the number of terms �n� in the summation
of Eq. �26�. Changes in the value of S are shown in columns 2 and 3 for a
small value of the dielectric constant �k=2� and a very large value
�k=1000�.

n

S

k=2 k=1000

15 0.210 013 309 5 0.153 867 218
20 0.210 013 298 8 0.153 866 796
25 0.210 013 297 5 0.153 866 795
30 0.210 013 297 4 0.153 866 795
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